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Hydrostannation of the carbeitarbon double bond is an Table 1. Optimization of Enantioselective Hydrostannation of 1a,b
important processyhich allows for the straightforward preparation Me

. oo . i Me3SnH (1.5 equiv) Me /SnMea R SnMes
of various types of useful building blocks for organic synthésis. I = N * >V/
While enantioselective versions of related hydrometalation pro- : 1a: R = COOMe ' R trans-2 ve cis-2
cesses, such as hydrosilylafi@md hydroboratiodare well-known, b:R=Ph
no precedents on enantioselective hydrostannation have been,,. R catalyst T°C  tme  transicis  eed%

reported to date. Although diastereoselective radical hydrostannation
employing chiral auxiliaries on either the substpatetin hydride
moiety? have been reported, the obtained de’s were below 40%.

COMe [PdP/(R-MOP -85  5min 95/5 12
COMe  [Pd]/ligandA r.t. 10 min 98/2 a7
COMe [Rhl¥ligandA  r.t. 20 min  >99/1 62

Herein we report the first example of catalytic highly enantio- Ph [Rh}/ligandA r.t. 20min  >99/1 65
selective hydrostannation of the double bond of cyclopropenes, COMe  [RhlligandA  r.t. 5h >991 ¢
COMe [Rh]/lligandB r.t. lday =>99/1 42

which allows for easy access to valuable optically active cyclo-

Ist % COMe  [Rh]/ligandC r.t. 20 min ~ >99/1 0
propylstannanes.

COMe  [Rh]/ligandD r.t. 20 min  >99/1 80

PPRPOO~NOOAWNERE

We have recently reported the highly diastereoselective transition COMe  [Rh]ligandD 0 30min  >99/1 84
metal-catalyzed hydrostannation of cyclopropeh&sis method 0 COMe [RhlligandD ~ —30 45min >99/1 94
1 Ph [Rh)/ligandD —30 45min  >99/1 90

allowed for efficient introduction of up to five different substituents
in the cyclopropy! ring. Obviously, we were interested in achieving  a gpantiomeric excess was determined by chiral GC analy&Rd(z-
asymmetric hydrostannation of cyclopropenes en route to nonra-allyl)Cl].. C[Rh(COD)CI]g 4 BusSnH was employed

cemic cyclopropylstannanes. Encouraged by the remarkable ef-

ficiency of the [Pdg-allyl)Cl]./(£)-MOP catalyst system in the

hydrostannation of a series of multisubstituted cyclopropémess, NH HN—i(( NH HNJ*

naturally attempted enantioselective hydrostannatiohaoh the PPh, PhoP PPh, thP

presence of optically activeH)-R-MOP ligand. This catalyst system RRIA (RR)}B

was previously shown by Hayashi to be very effective in the

enantioselective hydrosilylation of olefidgdowever, this combina- Pphz thp

tion provided disappointingly low enantiomeric induction (12% ee) HN NH o

in the hydrostannation dfa (Table 1, entry 1). Screening a number ‘\h PPh, pn@
of commercially available ligands revealed that the Trost ligand

(A) in combination with the Pd catalyst smoothly effected the (s:5)-¢ (RR)-D

reaction, exhibiting a moderate ee (47%, entry 2), while all other obtained at 0C (entry 9), whereas a dramatic improvement to up
chiral ligands tested provided either no reaction or decomposition to 94% ee was achieved at temperatures as low3@°C (entry

of the starting material. Further improvement of enantioselectivity 10). Hydrostannation of cycloproperid under these conditions
(62% ee, entry 3) was achieved when Rh cat@lysts employed  also displayed a very high enantiomeric induction (90%, entry 11).
instead of Pd in combination with ligandl. Moreover, switching Notably, the replacement of trimethyltin hydride with §8mH, in

to Rh allowed for complete suppression of the undesired formation this reaction, resulted in the totally racemic product (entry 5).

of ditin,° significant quantities of which were observed in all the Next, the optimized conditions were applied to the hydrostan-
Pd-catalyzed reactions. The hydrostannationlbfunder these  nation of a series of 3,3-disubstituted cyclopropenes (Table 2). We
conditions provided comparable degrees of enantiomeric inductionwere pleased to find that preparative hydrostannatioriiab
(entry 4). Inspired by the promising results obtained with ligand reproduced the high ee’s and allowed for the synthesis of cyclo-
A, we decided to screen a series of different diphenylphosphi- propylstannane®a,b in high isolated yields (entries 1, 2). Likewise,
nobenzoic acid-derived ligands, analogues Aaf which were hydrostannation of MOM-protected cyclopropenyl carbirial
previously demonstrated by Trost to efficiently catalyze asymmetric proceeded smoothly to givge with high yield and enantioselectivity
allylic alkylation reactions! Employment of naphthyl-based ligand  (entry 3). Hydrostannation of allyl estéd similarly to its methyl

B, however, significantly impeded the reaction and afforded lower analoguela, proceeded uneventfully to gived with very high
enantioselectivity (42% ee, entry 6). Furthermore, anthracene-basecenantiomeric excess (97% ee, entry 4). Eslefi,j and MOM-
ligand C provided completely racemic product (entry 7). Gratify- etherslgh of differently substituted cyclopropenyl carbinols were
ingly, hydrostannation ollb in the presence of stilbene-derived also smoothly hydrostannated under these reaction conditions to
ligand D proceeded smoothly, affording cyclopropylstann@ae afford optically active cyclopropylstannan2s—j with high yields
with respectable enantioselectivity (80% ee, entry 8). With this result and ee’s (entries-510).

in hand, we performed further optimization of the reaction condition. = Remarkably, facial selectivity of the Rh-catalyzed hydrostanna-
Expectedly, the enantiomeric induction was significantly improved tion was perfectly controlled by steric effects of substituents at C-3
at lower reaction temperatures. Thus, a slightly higher ee was of cyclopropenes, affording cyclopropylstannan&i 29-2'2 as
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Table 2. Rh-Catalyzed Enantioselective Hydrostannation of In conclusion, we believe that the chemistry described herein is
Cyclopropenes? not only fundamentally important as the first example of catalytic
R _ MesSH (1.5 equiv) RHS"ME3 enantioselective hydrostannation of &C double bond, but it also
R . Liga[nihéc giii'!;,,‘?{:.‘;'f;m R? Ras has high potential in synthesis as it allows for the very efficient

and straightforward approach to optically active cyclopropylstan-

. cyclopropene 1 @ cyclopropane2  yield, %° e, %¢  [alp nanes, invaluable building blocks for organic synthesis.
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